SOLUTION OF NONLINEAR CONTACT PROBLEMS FOR A HALF-PLANE

L. G. Dobordzhginidze UbC 539.3

We will examine the problem of the pressure of a finite number of rigid dies on the
boundary L of a nonlinearly elastic half-plane made of a material of the harmonic type [1,
2]. The sections of the boundary outside the dies are acted upon by specified normal
loads (additional loads) [3]. Shear stresses are absent everywhere on L, as are forces and
rotation at infinity. Certain contact problems for a half-plane without an additional load
were examined in [4].

1. Let the physical region we are considering S~ occupy the bottom part of the plane S
with the variable z = x + iy. We will designate the boudnary of S™ as L. Rigid dies press
against segments [ayby] of the straight line L without friction, while specified normal
stresses with the intensity Nk(x) act on the sections lendy] (cp << dp, dy << ap, choy = by), k =
1, 2, ..., n. We will assume that each additional load has a finite principal vector (0,
—N,;) and satisfies the Holder condition (including at an infinitely distant point if it
occupies an infinite interval of the boundary L).

We introduce the notation: L, — 2 [arby], Ly _2 [ckdk], Ly=L~\(L,+L,). Then the boundary
conditions of the problem take the form [5]

Xy =0on L, Yy=—Ny(z) on [eady], Y, =0on L,, (1.1)
T = f(z*) + e(z*) on L,

where Yy and Xy are components of the tensor of the Cauchy true stresses; Ng(x) is a
known function which is real on [cydy] and satisfies the above conditions; v~ is the normal
elastic displacement of points of the line L;; f(x%) is a real function assigned on the de-
formed line (x* = x + u"(x), u"(x) is the horizontal elastic displacement of points

of L,) and characterizing the geometry of the profile of the base of the dies (f'(x*) e H);
c(x*) is a piecewise-constant function; if the dies are not rigidly connected, then c(x*) =
ckx on [agbgl, while c(x*) = ¢y = const on L; if they are rigidly connected. In the first

case, we additionally assign the principal vector of the external forces acting on each die
(0, —Pg), while in the second case we assign the principal vector (0, —P,) of the acting
forces.

It should be noted that the function f(x*) = flx + u(x)] = £,;(x) assigned on L, is un-
known, since in our (nonlinear) formulation the geometry (form) of the boundary being de-
formed is unknown. It should be sought in the course of solution of the problem (i.e., it
is necessary to find the function u = u(x) on L,).

To solve the problem, we use the complex representations [2, 4]

Xt ¥yt dp = P20, v, X, — 20X, — (1.2)
4 (A 2p) Q(q) 02* 9z%,

u+iv=ﬂ“_2_p_j‘¢r2(z)dz+}fu_|—_f—2};[¢(z) +1p(z)]_zz*_z+u+w’ (1.3)
where

A L Atu e (z) E__ AFp 9@ (5 7= |.

= oirm? Ot iTmye s h+2ul Per ‘“Z)} (1.4)
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- 0z* 9z dz* oz ozt 20 tp
[—E"_éz_—a—z 9z ? 9—2 72'1 Q(Q)—q"' 7‘1‘{‘2!"'. (1.5)
It has been proven that
¢'(2) = 04in S- + L. (1.6)

In the above relations, X and u are the Lame constants; ¢(z) and y(z) are functions of
the complex argument z = x + iy which are analytic in the region S~ and, given sufficiently
large [z|, have the form

(A2 (X 4-5Y) . (1.7)
() =~ mnTm Inz + z 4 O(1) + const,
_(7»+2u)(X—iY)[ 1 _]
P(z) = T 5070 1 In?+0(1) + const

((X, Y) is the principal vector of all of the external forces applied to L).

In the absence of stresses at infinity, it folows from the first equaity of condition
(1.1) that

@) 9" (2)— ¢ (@)Y (@) =0 on L,

(1.8)
Making allowance for this relation in (1.2), we obtain
vy =N@ =20+ wlle* @ —1/[a+n+ule” @[] on L. (1.9)
After some elementary reductions, we find the formula
In@?(z) + ln ¢ (z) = 2F, (z) on L, (1.10)
where
F(z) — [H—u 2u+ N (2) }
o= e —r@ |
It is evident that, given safe loading conditions, Fo(x) > 0 in the region L.
We now differentiate Eq. (1.3) with respect to x and take (1.8) into account in the
resulting relation. Then, after performing certain obvious transformations,
In@?(z) — In ¢’ (z) = 2i6(x) on L (1.11)

(8(x) = arctan(dv/dx*) is a real function on L).

We introduce the new function Q(z) = In ¢ 2(z). In accordance with (1.6), this function
will be analytic in the region S~.

Assuming th time §(x) to be known, we write the boundary conditions as

Im Q(z) = 8(x) on L;, Re Qz) = Fy(x} on L, + L,. (1.12)

Here, 6(x) and F,(x) satisfy the Holder conditionon L, and L, + L;, respectively (in the latter
case, including an infinitely distant point).

In the above relations (as in (1.10) and (1.11)), by 1n % 2(x) we mean the boundary
value (from 8~ on L) of the holomorphic (in S~, following (1.6)) function 1n 9¢'2(z). This
will be the value for the branch for which lim Q(z) = 0.

Z—>oo

Thus, to determine the function Q(z), holomorphic in S~ and vanishing at infinity, we
obtain the familiar mixed problem for a half-plane — the Keldysh—Sedov problem. The solution
of the class h, of this problem has the form [6]

(1.13)

1 X(z)8(x)d , X(x)F (z)dz
Q(z) = m[i (Z)_(“Z) z lf’i x_"z + Pn_l(z)],
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where X(z) is the canonical function of this class in the corresponding contact problem
X(2) = Vi—a)lz — b) ... (2 — an)(z — by).

By X(z), we mean the branch which is holomorphic on a plane S cut out along L, so
that

lim [z="X (z)] = 1. (1.14)

Also, X(x) = XN(x), i.e., X(x) is the boundary value taken by the function X{z) on the
left side of L;. In (1.13)
P,z =Cygz" ' +Cy 2+ ...+ C, (1.15)

is an arbitrary polynomial with imaginary constants that are determined during the solution of

the problem. In particular, in accordance with (1.7), (1.13-1.15), one of them — the constant
C, — is determined as

Cy = —(& + 2w)iY2ap(h + p).

(1.16)
This means that we have
®'(z) = exp [(1/2)Q
P 2eE] (1.17)
(9(z) is the right side of Eq. (1.13)).
The (unique) solution (relative to 9 (z)) of problem (1.12) of the class h{a;, b;. s
aq, bp) takes the form
vin oo X@ 8(z)dzx X(z)j Fo (z)dz (1.18)
¢ (5) = e‘\p[ 2n L, X(x){(z — 2) + TJITLz X(a:)(a:~z)]
with observation of the following solvability conditions:
i‘zné(z)dz . 5 x"Fﬂ(z)di_ (A 4 2u)iY
i, X L, X@ T T WG+w
and
jr "8 (2)da _ f P, (z)dx
L1 X(Jc) —ZL2 X(z) at k:O’i""7n—‘1.
Finally, we present the (unique) solution of the class h(a,, a,, ..., ay) (relative to
9'(z)):
) .
’ e ae X, (3) j‘ Xy (2) 6 (2) dz S‘ Xb(x)FO(.z) dz (1.19)
4 (z)“e“‘p[znxb(:z.)(L1 X, (@) (z—2) _lL2 X @ e=a T
where
X = V&—a)e—ay) ... & — an), (1.20)

X0 =V —=0b)z — by ... z— by),

while, in accordance with (1.7), (1.20), the constant C; is determined from the formula

. zj, X, (x) 8 (2) dx -if Xy (&) By (2) dz (34 2p) o7
! L Xa (I) y

Xg (@) 2 (h+)”

After we find the function @(z), we can find the other sought potential ¢{z) from (1.8)
by using a Cauchy integral. As can easily be shown, with allowance for (1.7) we have

¥ (2) = — L J' @ ¢'@)dr (207 | 97 (3) 1nz__iyq;” (z) In zdz
Y @) (z —3) (AW G2 iy o (z)(z—3) |
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We determine the field of the elastic elements from (1.2-1.5). 1In particular, we
calculate the normal contact stresses in accordance with (1.9), while we find the elastic
displacement of points of the line L from the formula

. L u A+ u 1 2
”’“L“x‘[wzﬁwzuWw]“’ (=) — 1.

2. Example 1. Die with a Rectilinear Horizontal Base. Let there be one die (n = 1)
occupying a specified segment [ab] of the real axis L, while external normal stresses with a
constant intensity P, and P, act on sections [cid;}, [c,d,] (c; < dy, d; < 8, ¢, < dy, €5 > b)
outside the die on the same line. The die is loaded by external forces, the principal vector
of which will be designated as (0, —Py). We assume that the die can move only translationally.
The case when it may be inclined is discussed in the following example.

In accordance with (1.13) and (1.17), in the given‘problem we have

b :
o e 1 (VE_—a@E _bbdz (2.1)
(p(z)—e.\p[zﬂv(—————‘z_a)(z_b) (;‘) zr —2z
dg dy )
_if V(@ —a) (z—0b) F{V (2)dz —zj ViE—a @=0F)@dz 4 ¢
ci x—2 cy z—2 )

Here, C is a constant determined from (1.16) and the conditions of the problem in the form
C = (A + 20)(P + P, + Pyithnp(h + ). (2.2)

However, in the given case, 8(x) = 0 on [ab], while Fgl)(x) and ng)(x) are known con-

stants. Taking this into account, after calculating the necessary integrals we find from
(2.1) that

"(2) = ! (2w (P + P+ Py
v () =exp [2n V(Tm( BT u)l =
(2.3)
— FP (2) BiP (2) — F§ (R <z>> }
where
FP@ = {0+ p) @+ Pyp7 20+ ) — P} =F0 i =1, 2 (2.4)
R(") Z) V(d —a)(d —b V(Ci_a)(ci—b)+ (2.5)

a+b V(_d:_a-dle)+2d—a~b
: Vici—a) (6 —b)+2;,—a—b
[zvprwﬂ%_gg—a@_n+abw\-ﬂ+@—gm_mwﬂ@_q
[2 Vei—a) (& —0)E—a)G—2)+2(E—a) (b—2)+(d;—2) (22 —a—b) | (c;—2)

+(z_ +VE—a)—29 x

X In

We now use (1.9) and (2.3-2.5) to find the normal contact stresses N(x) under the die
in the following form (with x € [ab])

2 1 AFZPHPAPY i pyyy pp® gy | g
N(z)= : +"){ex"nv(z——7)-“’w—n[ 2(-+w) O o
1 AA2ZWCAPALY) o 5@ @) .
Motptper 7‘%‘““@[ TR RO J}

This formula differs from its linear classical analog in two important properties.
First, it depends on the elastic properties of the material. Second, the stresses in the
neighborhood of the end of the die remain finite. This follows in particular from (2.6)

lim N (z) =2+ p)e (2.7)

x->a{x—bh)
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TABLE 1

Plu
x 0,2 0.4 0,8 0,8

N(x)/2u
0 0,0977 0,1982 0,3017 0,4101
01 0,0978 0,1984 0,3024 0,4117
0,2 0,0979 0,1991 0,3036 0,4142
0,3 0,091 0,2023 0,3086 0,4170
0,4 0,1021 0,2083 0,3179 " 0,4296
0,5 0,1064 0,2175 0,3322 0,4489
0,6 0,1417 0,2287 0,349%4 0,4725
0,7 0,1698 0,3476 0,52 0,7092
0,8 0,1715 0,3519 0,5369 0,7681
0,9 0,2216 0,4569 0,6946 0,9229
0,99 0,7159 1,3444 41,7164 1,8876

TABLE 2
P/p
x 0,2 0,4 0.6 0,8

N(x)/2p
0 0,1358 0,2769 0,4208 0,5657
01 0,1372 0,2796 0,4252 0,5715
0,2 0,1406 0,2855 0,4341 0,5832
0,3 0,1445 0,2947 0,4481 0,6018
0,4 0,1510 0,3082 0,4685 0,6288
0,5 0,1601 0,3270 0,4971 0,6663
0,6 0,4717 0,3511 0,5334 0,7139
0,7 0,2399 0,4905 0,7387 0,9727
0,8 0,2465 0,5049 0,7608 1,0007
0,9 0,3421 0,6974 1,0288 1,3087
0,99 14,0676 1,7186 1,9295 1,9832

Table 1 shows values of the ratio N(x)/2p at different points of the contact region with
different values of P/u(P, = P, = P, = P) and at A = yu, when a = =1, b =1, ¢, = -3, d; = -2,
c, =2, d;, = 3.

Table 2 shows values of the same ratio N(x)/2u when the function Rgl) =0, i.e., when
the additional load acts only on the right side of the die on the segment [2, 3].

As this data shows, in the above-described cases the action of the load outside the
die significantly increases the contact stresses under the die.

Example 2. Die with an Inclined Rectilinear Base and an Additional Load. Let the angle
of inclination of the base after deformation form the angle w, with the positive direction of
the L axis. The same loads as in the previous case act outside the die on the sections
[cid;] and [c,d,]. Considering that 8(x) = w, in the given case, we obtain the following
from (1.19)

i© oz C,— FP RV (@) — FP R (2) ]
?

’ . _0 0
¢ (Z)_exp{ 2 * 27V e =2

where C, = (A + 2u)(P, + P, + P,)/2u(Xx + u), while ng), Rgi) are determined by Eqs. {(2.4-2.5).
By V(z — a)(b — z), we mean the branch for which at large |z| v(z —a)(b — z)= —iz + 0(1).

It is characterized by the fact that it takes positive values on the higher side [ab].

It follows from (2.2) that on [ab]

9% (2)| = exp [(noyz + C, — FP R (2) — FR R®(x))/n V(z— a) (b = )].

Inserting this expression into the right side of (1.9), we find the normal contact
pressure on [ab] in the form
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TABLE 3

Plu
x 0,2 0,4 0,6 0,8
N@)/2u
0 0,0977 0,1992 0,3037 0,4102
0,1 0,1041 0,2053 0,3094 0,4155
0,2 0,1118 0,2138 0,3186 0,4254
0,3 01211 0,2251 0,3319 0,4405
0,4 0,1326 0,2399 0,3502 0,4627
0,5 0,1470 0,2595 0,3750 0,4922
0,6 0,1647 0,2834 0,4053 0,5287
0,7 0,2404 0,4207 0,6025 0,7807
0,8 0,2577 0,4313 0,7067 0,7994
0,9 0,3735 0,6116 0,8443 14,0809
0,99 1,1883 1,6348 1,8524 1,9432
TABLE 4
P/u
x 0,2 0,4 0,6 0,8
N(x)/2p
0 0,1358 0,2768 0,4208 0,5657
0,1 0,1443 0,287 0,4327 0,5789
0,2 0,1545 0,3005 0,4494 0,5985
0,3 0,1668 0,3179 0,4717 0,6253
0,4 0,1824 0,3405 0,5012 0,6612
0,5 0,2015 0,3699 0,5404 0,7089
0,6 0,2257 0,4069 0,5896 0,7687
0,7 0,3118 0,6639 0,8098 1,0378
0,8 0,3447 0,6048 0,8565 1,0875
0,9 0,4964 0,8470 1,4592 1,4125
0,99 1,4519 1,8536 1,9646 1,9915
2u(2 -+ n) qexp .T/(*%(b_*) X
r—a —
N{z)= —

1
e g

htow (P, +P +P) 4 ' ]
o BB o )]

- (A +2p) (PP, 4Py 4 - ) (2.8)

As Eq. (2.6), Eq. (2.8) gives the distribution of the normal stresses in the contact region
without singularities. In particular, it can be seen from (2.8) that Eq. (2.7) is valid.
This in turn shows that plastic zones are formed at the indicated sites.

Table 3 presents values of N(x)/2u at different points of the contact region with w, =
0.1 and different values of P/u for A = u, when a =-1, b=1, ¢; =-3, d; = =2, ¢, = 2,
d, = 3, i.e., when the additional load acts on both sides of the die.

Table 4 shows values of N(x)/2u for the same conditions and parameters but with r(1) = o,
i.e., when an additional load with the intensity P acts on the right side of the die.

An analysis of the above data shows that action of the additional load outside the die
increases the contact stresses under the die.

3. Example 3. Die with a Rounded Base in the Case of an Additional Load. In this
case, we take (with acceptable accuracy) 8(x) = x/R, where R is a sufficiently large quan-
tity. The additional load acting outside the die is the same as in the previous examples.

We find from (1.18) that

! c [ V(z—a)(z~b)( 1 § zdx { Fo(z)dz
¢'(z)=exp o0 \ﬁ VQZEF:WW%X_?V@_“@;mkq) (3.1)
@ 2
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with satisfaction of the conditions

LS zdz _ l.f Fy (o) da (3.2)
1/<z~‘_a> @=0 L, VEe—d@E—-b
1 j‘ j‘ zF () dz (h+20) P,
£, Vw——“a—TF?‘_:b_)' V(mﬂ?—_m THBEw

After completing the corresponding calculations, we find from (3.1) that

Ve—at—2 (1  FURY @+ FY R )
2 7T p '

(3.3)

¢’ (Z)=eXp[§i,% +

where

Rl(z)z 1 .[2 V(ci——a) (ci—b)(z——a)(b—z)+(ci—z)(2z-—a——b)]

Vie—a) (b —2) "3 V (@ — ay (d; — b) (z=—a) (b—z) ~H(d; —z)(2e—a—b) ]’

In these relations, the parameters a and b are constants that are yet to be determined
They should be found from conditions (3.2). The first of them leads to the equation
. 2, —~a—b 2, —a—b (3.4)
FV (arcsin X _ __arcsin —cl—-—a——-) —
b—a b—a

7@ . 2d,—a—b . 2, —a—b )
— L'y’ [arcsin ﬂ——aPCSlﬂ—b—_—a— =JT,((1 —+ b)/ZR,

while after some simple calculations the second gives us

n(3a? + 3% — 2ab)/SR + FP {V(d — a}{d, — b) — V(cl——a) {c,—b)—
2d —a—b N 2c. —a—b
gbamﬂn 2‘: +aébmmm %bja J
+ 2(;12 —a—b

+ F((32>[V(d2“a)(d2’“b)— V(c2—a)(c2—b)——a 2 barcsin b—a

a-b . 262—a~b] (A +2) (P, + P —l—‘P)
+ —5— aresin — = 2H(;~+H)1 2

—a

(3.5) becomes

In particular, at a = =%, b = 2, in the absence of an additional load Eq.
an identity, while (3.6) leads (after some elementary calculations) to the equation

L= VT 20)R(P, + P, + Pylap(h + p).
We will calculate the boundary value of the function ¢'(z)

Let us return to Eq. (3.3).
Then

on [ab] and insert the resulting expression into (1.9).

FORM oy 1 p(2) p@)
2u<x+u){exp[(i}+ o B @A (“)>1/(z_a)(b_z)]_1}

N (z) =

(1) (D) () p(2)
7~+H+Hexp.[(%_}_170 R (Z)ip" R m)v@_a)(b_z)J

This formula gives the distribution of the normal stresses in the contact region. As

can be seen, while changing continuously within the region, these stresses vanish at its ends
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FUNDAMENTAL SOLUTIONS OF THE THEORY OF
UNIDIRECTIONAL COMPOSITES

E. A. Lankina and A. M. Mikhailov UDC 539.2

In the present study, we solve a problem concerning the action of a concentrated force
in an infinite undirectional composite for the two- and three-dimensional cases. The
approach that is taken makes it possible to express the solution of the problem of deformation
by body forces in the form of series and integrals, solve the problem of a loaded half-
space (half-plane), and asymptotically obtain known solutions on fiber rupture that can be
employed in crack problems.

1. We will examine an infinite unidirectional composite in which the fibers form a
square grid in the section perpendicular to the reinforcement direction z. The period of
the grid is H + h (the cross-sectional area of the fibers is h?2). The numbers of the nodes
are represented by the subscripts j and k. The dimensionless_coordinates along the fibers
£ = z/VHh, while the dimensionless displacement wj j = uj,k//Hh. The displacement satisfies
the equation [1]

62Wj,h/a§2 -+ ﬁzA,-kw = 0, — o0 < J, k << oo,

Apw = Wiy + Wip-1 — 4Wsn + Wirrw + Wi e (1.1)

and the auxiliary conditions
0je >0, || > o0, 05 = Edw;,,/dE; (1.2)
ool = Epu| —ESe| =20 (1.3)

Condition (1.3) gives a jump in the normal stress in the fiber k = j = 0 at the point £ = 0.
This corresponds to the application of a concentrated force —2Qh? to the fiber. Here, B? =
G/E: E and G are the Young's modulus and shear modulus for the fiber and the binder; h and
H are the width of the fiber and binder. The solution will be sought by means of double dis-
crete Fourier transformation. Each equation of system (1.1) is multiplied by exp(—ijs) x
exp(—ikq), —m ¢ s, ¢ < 7 and summed over j, k within infinite limits. After completing some
elementary transformations, we arrive at a linear differential equation with constant coeffi-
cients. The equation is of the second order in I relative to the double Fourier series:

N " ) (1.4)
w = 3w (§)exp(— ijs)exp(— k).
Js =—00
The solution of (1.4) depends on two arbitrary constants. Although being independent of £,
these constants generally depend on the parameters s and q. One of them is equal to zero,
thanks to (1.2). After solving (1.4), we find wi k from the inversion formula expressing
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